BRIEF COMMUNICATIONS

Phases Observed at 900–1100°C in the Binary Ln-Ba-O Systems for Ln = Dy, Ho, Er, Tm, and Yb

E. HODOROWICZ,* S. A. HODOROWICZ,* AND H. A. EICK†

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322

Received January 26, 1989; in revised form September 22, 1989

The compounds $Ln_2Ba_2O_5$, $Ln_2Ba_4O_7$, and $Ln_4Ba_3O_9$, for Ln = Dy, Ho, Er, Tm, and Yb, have been prepared and characterized by X-ray powder diffraction. Phase interrelationships were established as a function of temperature by quenching specimens annealed at 900–1100°C. Comparable Ln = Tbphases could not be prepared. Lattice parameters are presented for all phases observed. © 1990 Academic Press, Inc.

Introduction

The report of 90 K superconductivity in the Y-Ba-Cu-O system (1) has produced an intensive research effort directed at characterizing this and related ternary oxide systems. Complete characterization requires that the number and composition of all compounds in binary Ln-Ba-O (Ln = La-Lu) systems be established. Most published work relates specifically to the superconducting region, with minimal emphasis on the binary components; only one detailed study of the Ln-Ba-O region could be found (2). Lopato and co-workers (3, 4)constructed phase diagrams for the Ln-Ba-O systems, with Ln = Y, Dy, and Yb, over the temperature range 1200-2400°C. They

* On leave from Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland.

† To whom correspondence should be addressed.

found only the compounds Ln_2BaO_4 and $Ln_4Ba_3O_9$. Later investigations of the Y-Ba-O system (5, 6) in the 900-1000°C range disclosed the presence of the additional compounds $Y_2Ba_2O_5$ and $Y_2Ba_4O_7$, and a complete phase diagram which covered the 900-2400°C region was presented in Ref. (7). According to Kwestroo *et al.* (5) $Y_2Ba_2O_5$ could not be prepared pure; it was present as one of two or three components in specimens heated at 900°C.

These observations suggested that similar phases would be present in related lanthanoid systems. We therefore undertook a systematic study of the Ln-Ba-O systems for Ln = Dy-Yb to prepare these phases and report herein the results of this study.

Experimental

Reactants were Ln₂O₃ (nominally 99.9%, Research Chemicals, Phoenix, AZ) and 0022-4596/90 \$3.00 Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved.

401

BaCO₃ (reagent grade, J. T. Baker Co., Phillipsburg, NJ). The reactants were examined by X-ray powder diffraction; all were found monophasic. Stoichiometric quantities of the reactants were weighed to an accuracy of ± 0.1 mg. On the basis of the report of Kwestroo et al. at least three specimens at Ln: Ba molar ratios of 1:1, 1:2, and 1.33:1 were prepared for each system investigated. Mixtures of 500 mg each were ground in acetone, dried, confined in alumina boats, and then fired at 900°C for 24 hr. The samples were airquenched by removing them from the furnace, examined by X-ray diffraction, reground in acetone, and then fired again at a higher temperature. Experiments were continued to a temperature of 1100°C.

Temperatures were determined to an accuracy of $\pm 5^{\circ}$ C with Omega stainless-steelencased type K thermocouples and Doric digital temperature indicators. Products obtained at each stage of reaction were examined by X-ray powder diffraction with monochromatized Cu $K\alpha_1$ radiation ($\lambda\alpha_1$ = 1.54050 Å) in a 114.59-mm Guinier-Hägg camera evacuated to 10⁻³ Torr during exposure. NBS-certified Si powder [a =5.43082(3) Å] served as internal standard. Reflection positions were measured with a Supper film reader; intensities were estimated visually. Lattice parameters of the individual compounds were calculated with locally written least-squares programs. Xray intensity calculations were effected with the program POWD12 (8).

Results and Discussion

From the compounds detected in the Xray diffractograms the phase relationships were determined; they are summarized in Table 1. All of the systems behaved similarly and three phases which could be prepared pure were found in each: $Ln_2Ba_2O_5$, $Ln_2Ba_4O_7$, and $Ln_4Ba_3O_9$. Previously unre-

TABLE I

Phases Observed as a Function of Temperature in the Systems Ln_2O_3 -BaCO₃ (Ln = Dy, Ho, Er, Tm, and Yb)

Ln/Ba ratio		Phases observed at temperature (°C) indicated ^a							
	Phase expected	900	920	940	960	980	1020	1100	
1:1	Ln2Ba2O5	ABC	A ^t B ^t C	с	ACD	AD	DEF	EF	
1:2	Ln2Ba4O7	ABC	$B^{t}C$	CF	CDE	D	DEF	EF	
1.33 : 1	Ln ₄ Ba ₃ O ₉	ABC	$AB^{t}C$	AC	ACD	AD	ADE	Ε	

 ${}^{a}A$, $Ln_{2}O_{3}$; B, BaCO_{3}; C, $Ln_{2}Ba_{2}O_{5}$; D, $Ln_{2}Ba_{4}O_{7}$; E, $Ln_{4}Ba_{3}O_{9}$; F, BaO; t, trace.

ported powder X-ray diffraction data for these phases are summarized in Tables II-IV. The X-ray powder diffraction patterns of the $Ln_2Ba_2O_5$ -type phases were indexed on tegragonal symmetry with lattice parameters close to those reported by Kwestroo et al. (5) for $Y_2Ba_2O_5$. The observed (hkl) values suggest that these compounds have primitive unit cells. The $Ln_2Ba_2O_5$ compounds were found stable only to \sim 950°C. If the specimens were heated above this temperature $Ln_2Ba_4O_7$ -type compounds were observed. At 980°C the phase transformation to $Ln_2Ba_4O_7$ was complete, but pure phases were observed only for specimens mixed at the molar ratio 1:2. The Xray diffraction patterns of $Ln_2Ba_4O_7$ could be indexed on tetragonal symmetry with lattice parameters which agree well with the data of Kovba et al. (6) for $Y_2Ba_4O_7$. When the samples are fired above 1000°C $Ln_4Ba_3O_9$ phases result. The phase behavior observed for all the systems is in general agreement with the detailed phase diagram reported for the Y-Ba-O system (7). Lattice parameters of all the phases prepared in this work are compiled in Table V. A "Tb₄O₇" sample reduced to Tb₂O₃ by hydrogen did not react with BaO under the reaction conditions used.

The X-ray data for the $Ln_4Ba_3O_9$ phases are of concern. All observed diffraction reflections from $Ln_4Ba_3O_9$ phases (when in

		Dy		Но		Er		Tm		Yb	
h k l	$\overline{I_0^a}$	d_0									
001	w	11.92	m	11.90	s	11.88	m	11.87	s	11.92	
002	w	5.962	m	5.947	m	5.923	m	5.929	m	5.953	
100			w	4.377	w	4.361					
101	w	4.115	m	4.107	m	4.092	m	4.091	m	4.063	
003					х	3.954					
102	m	3.535	m	3.521	m	3.514	m	3.512	m	3.497	
110	vs	3.101	vs	3.092	vs	3.084	vs	3.082	vs	3.057	
111			vw	2.993	w	2.983	vw	2.983			
103	s	2.948	vs	2.935	vs	2.929	vs	2.928	vs	2.923	
112	х	2.752			vw	2.736	vw	2.735	vw	2.719	
113	w	2.446	m	2.436	m	2.432	w	2.430	m	2.423	
005	w	2.388	m	2.374	m	2.371	vw	2.372	w	2.381	
200	S	2.194	vs	2.186	vs	2.181	s	2.179	vs	2.163	
105	m	2.097	w	2.087	х	2.083	vw	2.083	w	2.085	
202	W	2.059	w	2.051			vw	2.045	w	2.033	
006	m	1.9898	m	1.9790	m	1.9758	m	1.9764	m	1.9845	
115	w	1.8916	w	1.8834	vw	1.8789	vw	1.8797	w	1.8787	
212	w	1.8641	w	1.8570	vw	1.8525			w	1.8397	
204	w	1.7672									
123	8	1.7603	vs	1.7531	s	1.7488	vs	1.7482	vs	1.7395	
116	m	1.6751	vs	1.6667	s	1.6636	m	1.6638	s	1.6648	
205	vw	1.6155			w	1.6049	х	1.6039	m	1.6011	
220					w	1.5425	w	1.5423			
125							х	1.5060			
206	w	1.4737	w	1.4668	w	1.4642	m	1.4641	w	1.4623	
300							х	1.4524			

TABLE IIObserved Interplanar d-Spacings (Å) and Relative Intensities for Tetragonal $Ln_2Ba_2O_5$ (Ln = Dy, Ho, Er, Tm, and Yb)

^a Estimated from Guinier films: v, very; s, strong; m, medium; w, weak; x, extremely weak.

pure form—the 1.33:1 preparations) could be indexed on hexagonal symmetry with lattice parameters close to those which are based on the Sc₄Ba₃O₉ structure and are reported by Lopato (2). Our interplanar *d*-values for Ln = Tm agreed very well with those reported by Spitsyn *et al.* (9) and consequently are omitted from Table IV. Kovba and Paromova determined the structure of Sc₄Ba₃O₉ from powder X-ray data and report the space group to be $R\overline{3}m$ (10). Consistent with this space group assignment, Blanchard *et al.* in a spectroscopic study of Eu³⁺-doped Lu₄Ba₃O₉ determined that the dopant was equally distributed over two sites of rhombohedral symmetry (11). X-ray powder diffraction intensities were calculated for Dy₄Ba₃O₉ with the positional parameters reported for Sc₄Ba₃O₉ and with thermal parameters estimated as 0.95, 1.0, and 1.5, respectively, for Dy, Ba, and O. An examination of these intensity data (see Table IV) reveals that while the strong reflections match reasonably well, agreement among the weaker reflections is less satisfactory. Three weak reflections in the Ln = Dy data set, 6.333, 1.9520, and 1.9435 Å, two in the Ln = Ho set, 6.318 and

BRIEF COMMUNICAT	IONS

		Dy		Но		Er		Tm		Yb	
h k l	$\overline{I_0^a}$	d_0	I_0^a	d_0	$\overline{I_0^a}$	d_0	$\overline{I_0^a}$	d_0	$\overline{I_0^a}$	d_0	
002	vw	14.35	w	14.28	w	14.38	x	14.40	w	14.43	
004	s	7.168	S	7.157	s	7.189	m	7.201	vs	7.215	
101	m	4.316	m	4.307	m	4.300	vw	4.268	m	4.253	
103	m	3.978	w	3.964	m	3.958	vw	3.936	s	3.927	
008	vw	3.587	w	3.582	w	3.592			vw	3.614	
105	S	3.482	m	3.468	s	3.467	m	3.454	s	3.451	
110	vs	3.093	vs	3.083	vs	3.074	vs	3.053	vs	3.043	
10.7	vs	2.996	vs	2.985	vs	2.983	vs	2.976	vs	2.979	
113			х	2.935	vw	2.926	vw	2.912			
114	w	2.841	vw	2.831	m	2.826	х	2.812	m	2.805	
109	m	2.578	m	2.572	m	2.573	vw	2.572	m	2.575	
0 0 12	m	2.395	m	2.389	m	2.396	w	2.399	m	2.410	
118	s	2.343	s	2.337	s	2.334	m	2.328	8	2.328	
1011	s	2.243	s	2.237	s	2.239	m	2.239	S	2.244	
200	vs	2.189	vs	2.180	vs	2.172	vs	2.159	vs	2.152	
202					х	2.148			vw	2.128	
204	m	2.092	m	2.085	m	2.079	w	2.068			
0014	m	2.054	m	2.048	m	2.054	m	2.059	\mathbf{s}^{b}	2.064	
211	vw	1.9523	m	1.9450	w	1.9381					
213			vw	1.9107	vw	1.9044	w	1.8942			
1 1 12	m	1.8941	m	1.8886	m	1.8886	vw	1.8887	m	1.8896	
208	х	1.8689	w	1.8624	w	1.8583			x	1.8498	
215	m	1.8527	m	1.8459	m	1.8406	vw	1.8320	m	1.8262	
1 1 13	vw	1.7988	w	1.7939	w	1.7944					
217	vs	1.7669	vs	1.7609	vs	1.7563	vs	1.7489	vs	1.7450	
1 1 14	S	1.7111	s	1.7064	s	1.7068	m	1.7074	s	1.7098	
219	w	1.6691	w	1.6630	w	1.6598					
2012	s	1.6157	m	1.6107	m	1.6087	vw	1.6067	m	1.6057	
2 1 11	s	1.5667	m	1.5616	s	1.5589	m	1.5548	s	1.5534	
220	s	1.5475	s	1.5416	s	1.5357	m	1.5253	s	1.5218	

TABLE IIIObserved Interplanar d-Spacings (Å) and Relative Intensities for Tetragonal $Ln_2Ba_4O_7$ (Ln = Dy, Ho, Er, Tm, and Yb)

^a Estimated from Guinier films: v, very; s, strong; m, medium; w, weak; x, extremely weak. ^b Broad reflection.

1.9354 Å, and the 2.633 and 2.623 Å d-values in the Er and Tm sets, respectively, violate the (-h + k + l) rhombohedral constraint. Since the phases were prepared by rapid quenching, the extra reflections might belong to another phase. A search of the ASTM powder diffraction file for probable impurity reflections, e.g., Dy₂O₃ BaO, BaCO₃, or BaO₂, did not reveal any likely candidate (12). From the Dy₂O₃ and BaO unit cell volumes the Dy₄Ba₃O₉ molar vol-

ume can be estimated as 3 V(BaO) + $2V(Dy_2O_3) = 275 \text{ Å}^3$. For hexagonal indices z must then equal 3.

The largest data set, that of Dy₄Ba₃O₉, was submitted to the indexing program TREOR (13). The best fit was obtained when the three reflections mentioned above were omitted: a monoclinic cell with the figure-of-merit: M(20) = 73 (14) and refined lattice parameters: a = 8.6045(7), b = 3.0550(4), c = 5.268(4) Å, $\beta = 101.85(8)^{\circ}$.

Rhombohedral $Ln_4Ba_3O_9$ ($Ln = Dy$, Ho, Er, and Yb)										
		Dy			Но	Er		Yb		
h k l	$\overline{I_0^a}$	I_{c}^{b}	d_0	$\overline{I_0^a}$	d_0	$\overline{I_0^a}$	d_0	$\overline{I_0^a}$	d_0	
	w		6.333	x	6.318					
012	s	5	4.891	m	4.874	m	4.856	s	4.814	
015	s	2	3.659	s	3.647	m	3.635	s	3.602	
110	vs	100	3.066	vs	3.055	vs	3.041	vs	3.019	
107	vs	80	2.985	vs	2.975	vs	2.961	vs	2.939	
113	w		2.882							
009	vw	1	2.807			х	2.786	w	2.762	
						vw	2.633			
021								w	2.600	
202	w	3	2.597							
205	w	4	2.350	m	2.342	w	2.332	m	2.312	
-				х	2.327					
1010	х	1	2.281	vw	2.271					
027	vs	31	2.139	vs	2.131	vs	2.121	vs	2.105	
0 0 12	w	2	2.105	w	2.096	х	2.089	w	2.071	
119	s	14	2.070	s	2.062	m	2.054	s	2.038	
122	w	2	1.9520					w	1.9505	
	w		1.9435	vw	1.9354					
125	w	1	1.8650	w	1.8586	х	1.8505	vw	1.8362	
300	vs	24	1.7700	vs	1.7642	vs	1.7556	vs	1.7419	
217	vs	39	1.7538	vs	1.7477	vs	1.7398	vs	1.7265	
1 1 12	s	6	1.7356	m	1.7286	m	1.7224	m	1.7080	
0114	s	7	1.7085	s	1.7020	m	1.6955	s	1.6816	
220	s	20	1.5324	vs	1.5275	s	1.5206	vs	1.5089	

TABLE IV
Observed Interplanar <i>d</i> -Spacings (Å) and Relative Intensities for
Rhombohedral $Ln_4Ba_3O_9$ ($Ln = Dy$, Ho, Er, and Yb)

^a Estimated from Guinier films: v, very; s, strong; m, medium; w, weak; x, extremely weak.

^b See text.

The 135-Å³ volume of this monoclinic cell is just about half the expected volume, half that of the rhombohedral cell, and typical of a cell, one edge of which needs to be doubled. Other cells selected by the indexing program accounted for all reflections and had figure-of-merit values of \sim 5: and unit cell volumes of \sim 1000 Å³, but there was no apparent justification for selecting any particular one.

Data on Nd₄Sr₃O₉ were found in the CRYSTDAT data base (15, 16). This similar high-temperature crystalline modification was assigned to space group C_s^4 -Cc with a = 11.474, b = 7.238, c = 13.246 Å,

 $\beta = 115.6^{\circ}$, and a cell volume of 992.1 Å³. With the positional and thermal parameters reported for this phase and with estimated lattice parameters a theoretical powder pattern was calculated for Dy₄Ba₃O₉. Although the two strongest reflections match, the calculated and observed patterns in general disagree. It appears that the true symmetry of the $Ln_4Ba_3O_9$ phases studied in this work must be determined by single-crystal techniques.

The data obtained in this work suggest a composition-dependent reaction path. Reactants transform to $Ln_4Ba_3O_9$ according to Eq. (1)-(3):

$$2 Ln_{2}O_{3}(s) + 4 BaCO_{3}(s) \xrightarrow{900-940^{\circ}C} 2 Ln_{2}Ba_{2}O_{5}(s) + 4 CO_{2}(g) \xrightarrow{950-1000^{\circ}C} Ln_{2}Ba_{4}O_{7}(s) + Ln_{2}O_{3}(s) \xrightarrow{1020-1100^{\circ}C} Ln_{4}Ba_{3}O_{9}(s) + BaO(s) (1)$$

$$2 Ln_{2}O_{3}(s) + 8 BaCO_{3}(s) \xrightarrow{900-940^{\circ}C} 2 Ln_{2}Ba_{2}O_{5}(s) + 4 \cdot BaO(s) (s) + 8 CO_{2}(g) \xrightarrow{950-1000^{\circ}C} 2 Ln_{2}Ba_{4}O_{7}(s) \xrightarrow{1020-1100^{\circ}C} Ln_{4}Ba_{3}O_{9}(s) + 5 BaO(s) (2)$$

$$8 Ln_{2}O_{3}(s) + 12 BaCO_{3}(s) \xrightarrow{900-940^{\circ}C} 6 Ln_{2}Ba_{2}O_{5}(s) + 2 Ln_{2}O_{3}(s) + 12 CO_{2}(g) \xrightarrow{950-1000^{\circ}C} 3 Ln_{2}Ba_{4}O_{7}(s) + 5 Ln_{2}O_{3}(s) \xrightarrow{1020-1100^{\circ}C} 4 Ln_{4}Ba_{3}O_{9}(s) (3)$$

These reactions are reversible and if the quenching procedure was not sufficiently rapid, small amounts of the lower temperature phases were also present in the X-ray diffraction patterns. The transformation rate was found to vary from sample to sample, but since its rate could not be quantified it was not investigated systematically. Generally speaking, all of the compounds obtained are metastable at room temperature.

In summary, phase relationships were determined in the temperature interval 900–1100°C in the Ln_2O_3 -BaCO₃ system for Ln = Dy, Ho, Er, Tm, and Yb and for initial mixtures of the molar ratios Ln : Ba = 1:1, 1:2, and 1.33:1. Diffraction patterns

TABLE V

Lattice Parameters and Cell Symmetries of $Ln_2Ba_2O_5$, $Ln_2Ba_4O_7$, and $Ln_4Ba_3O_9$ Compounds for Ln = Dy, Ho, Ef, Tm, and Yb

Compound			Lattice pa	arameters ^b		
Formula	Ln	a Symmetry ^a a (Å) c		c (Å)	$ \begin{array}{c} & \text{Cell} \\ \dot{\text{A}} & \text{vol.} (\dot{\text{A}}^3) \end{array} $	
,,	Dy		4.3879(6)	11.939(2)	229.87	Grey
	Ho		4.3711(7)	11.870(2)	226.79	Cream
$Ln_2Ba_2O_5$	Er	Т	4.3617(5)	11.853(2)	225.49	Pink
	Tm		4,3587(5)	11.857(1)	225.26	Beige
	Yb		4.3263(6)	11.908(2)	222.88	Grey
	Dy		4.3776(8)	28.755(8)	551.04	Grey
	Ho		4.3607(5)	28.681(4)	545.39	Tan
Ln ₂ Ba ₄ O ₇	Er	Т	4.3436(6)	28.742(6)	542.27	Pink
	Tm		4.3203(8)	28.834(8)	538.19	Grey
	Yb		4.3051(6)	28.937(7)	536.31	Grey
	Dy		6.1307(4)	25.263(2)	822.25	Grey
	-		6.132 ^c	25.29		-
	Ho		6.1105(6)	25.158(3)	813.34	Тап
			6.109°	25.15		
$Ln_4Ba_3O_9$	Er	H(R)	6.082(5)	25.072(3)	803.21	Pink
4 3 3			6.087 ^c	25.07		
	Tm		6.0558(4)	24.989(2)	793.99	Beige
			6.063 ^c	24.95		-
	Yb		6.0352(5)	24.861(3)	784.27	Tan
			6.038 ^c	24.86		

^a T, tetragonal; H(R), rhombohedral, on hexagonal indices.

^b The estimated standard deviations (in parentheses) refer to the last digit indicated.

^c Ref. (2).

are in good qualitative agreement with those reported for the yttrium analogs. The $Ln_2Ba_2O_5$ phases were found stable only below 950°C; above this temperature they transform to $Ln_2Ba_4O_7$. These $Ln_2Ba_4O_7$ phases are stable between 950 and 1000°C; above 1000°C $Ln_4Ba_3O_9$ was stable.

Acknowledgments

Support of the National Science Foundation, Division of Materials Research, Solid State Chemistry Program, DMR 84-00739, is acknowledged gratefully. S.A.H. and E.H. also acknowledge support of the Polish Academy of Science, Program CPBP01.12.

References

- M. K. WU, J. R. ASHBURN, C. J. TORNG, P. H. HOR, R. L. MENG, L. GAO, Z. G. HUANG, Y. Q. WANG, AND C. W. CHU, *Phys. Rev. Lett.* 58, 908 (1987).
- 2. L. M. LOPATO, Ceramurgia Int. 2, 18 (1976).
- L. M. LOPATO, I. M. MAISTER, AND A. V. SHEV-CHENKO, Inorg. Mater. 8(5), 749 (1972). [Izv. Akad. Nauk SSSR Neorg. Mater. 8, 861 (1972).]
- I. M. MAISTER AND L. M. LOPATO, Inorg. Mater. 9(1), 57 (1973). [Izv. Akad. Nauk SSSR Neorg. Mater. 9, 64 (1973).]

- 5. W. KWESTROO, H. A. M. VAN HAL, AND C. LANGEREIS, *Mater. Res. Bull.* 9, 1631 (1974).
- L. M. KOVBA, L. N. LYKOVA, AND E. V. ANTI-POV, Russ. J. Inorg. Chem. Eng. Trans. 28(3), 409 (1983).
- 7. R. S. ROTH, K. L. DAVIS, AND J. R. DENNIS, Adv. Ceram. Mater. 2, 303 (1987).
- D. K. SMITH, M. C. NICHOLS, AND M. E. ZO-LENSKY, "A FORTRAN IV Program for Calculating X-Ray Powder Diffraction Patterns: Version 10," Pennsylvania State University, University Park (1983).
- V. I. SPITSYN, L. M. KOVBA, M. V. PAROMOVA, I. V. YUDINSKAYA, AND I. G. PROKOF'EVA, *Dokl. Acad. Nauk SSSR* 180, 879 (1968).
- L. M. KOVBA AND M. V. PAROMOVA, Vestn. Mosk. Univ. Ser. 2: Khim. 25(5), 621 (1970).
- M. BLANCHARD, C. LINARES, AND F. GAUME-MAHN, C. R. Acad. Sci. Ser. B. 272, 1085 (1971).
- Powder Diffraction File, JCPDS: International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19801.
- P. E. WERNER, L. ERIKSSON, AND M. WESTDAHL, J. Appl. Crystallogr. 18, 367 (1985).
- 14. P. M. DE WOLFF, J. Appl. Crystallogr. 1, 108 (1968).
- CRYSTDAT: Canada Institute for Scientific and Technical Information, National Research Council of Canada, Ottawa, Canada K1A OS2.
- 16. A.-R. SCHULZE AND H. MÜLLER-BUSCHBAUM, Z. Anorg. Allg. Chem. 461, 48 (1980).